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In  this work a study has been made of the Stuart (1960)-Watson (1960) formalism 
as applied to plane Poiseuille flow. In  particular, the higher-order Landau coefficients 
have been calculated for the Reynolds & Potter (1967) method and for the Watson 
(1960) method. The results have been used to study the convergence of the 
Stuart-Landau series. A convergence curve in the (a, &-plane has been obtained by 
using suitable Domb-Sykes plots. In  the region of poor convergence of the series, and 
also in a part of the divergent region of the series, it has been found that the Shanks 
(1955) method, using the ep transformation, serves as a very effective way of finding 
the proper sum of the series, or of finding the proper antilimit of the series. The results 
for the velocity calculations a t  R = 5000 are in very good agreement with Herbert’s 
(1977) Fourier-truncation method using N = 4. The Watson method and the 
Reynolds & Potter method have also been compared in the subcritical and supercritical 
regions. It is found in the supercritical region that there is not much difference in 
the results by the ‘true problem’ of Watson and the ‘false problem’ of Reynolds & 
Potter when the respective series in both methods are summed by the Shanks method. 
This fact could possibly be capitalized upon in the subcritical region, where the 
Watson method is difficult to apply. 

1. Introduction 
The study of the stability of plane Poiseuille flow using a Stuart-Landau-type series 

to describe the growth rate of the disturbance amplitude, has been of considerable 
interest in the past. Pioneering works in this field, following Landau (1944), are those 
of Stuart (1960) and Watson (1960), followed by those of Eckhaus (1965), Reynolds 
& Potter (1967) and Itoh (1974a, b ,  1977a, b ) .  Close scrutiny of these works, starting 
with Stuart’s, reveals that despite many similarities there are also important points 
of differences. Some of these differences are obvious, but some are subtle though 
important. For instance, Eckhaus uses the method of eigenfunction expansions to 
solve his equations, and Itoh uses Eckhaus’s mathematics but develops the problem 
mainly according to his own philosophy. 

In  the present work a study has been made of the Reynolds & Potter (1967) method 
(hereinafter to be referred to as RP)  in the subcritical region, to obtain the region 
of convergence of the Stuart-Landau series, and to calculate the equilibrium 
amplitudes and velocity distributions. It is found that, by using the ey transformation 
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of Shanks (1955), the R P  method can be used effectively not only in the region of 
poor convergence of the Stuart-Landau series, but also in certain portions of the 
divergent region. Further, a comparison of the ‘false problem’ of R P  and the ‘true 
problem’ of Watson has been made. In  the supercritical region it is found by using 
the Shanks method that the ‘ false problem ’ and the ‘true problem’ give substantially 
the same sums for the series at different levels of amplitude. It is believed that, from 
the practical viewpoint, the results will have relevance in the understanding of the 
phenomenon of transition from laminar to turbulent flow. 

2. Salient features of the formulation 
The salient features of the general formulation of the problem are outlined in this 

section. The expressions specific to Stuart’s (1960) theory, Watson’s (1960) theory 
and Reynolds & Potter’s (1967) theory are discussed in $3. This is followed in $34 
and 5 by a brief discussion on the solution for the functions and the numerical 
procedures adopted. 

The two-dimensional Navier-Stokes equation in terms of the stream function Y 
is given as follows: 

a ay a ay a 1 
- (VZ !q + - - (VZ Y )  - - - (VZ y3 - -v4 Y = 0, 
at ay ax ax ay R 

where R is the Reynolds number. 

perturbations as follows: 
The stream function Y is decomposed into a mean part $o and a Fourier series of 

W 

= $o(y, t)  + 2 $n exp {nia(x--c, t )>,  (2) 
n--w 
n+O 

where a is the spatial wavenumber in the downstream x-direction and c, is the phase 
velocity according to the linear theory, corresponding to a given a and R. Further, 
for n < 0, $-, = Jn, where the tilde (“) denotes the complex conjugate. All velocities 
are normalized with respect to the channel centreline velocity, all distances are 
normalized with respect to the half-width of the channel, and the lateral distance y 
is measured from the centreline of the channel. 

=- 1 - y 2  owing to 
nonlinear effects. The expression for 

The mean velocity a changes from its laminar value of 
is given as 

W 

a = $6; = 1 - g +  z IA)2nFn(y), (3) 

where primes denote differentiation with respect to y ,  A is the amplitude associated 
with the eigen function of the linear problem, and Fn(y) are called the mean-motion 
distortion functions. 

To enable separation between time and space variables, any disturbance harmonic 
$* can be expressed as 

n-1 

W 

where A = A(t )  and $pd = $ p d ( Y ) .  
The equation for amplitude growth is given by the StuarbLandau series as 

dA W 

- = aciA+iaA I: KnIAIzn, 
dt n-1 
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where the Kn are called the Landau coefficients. Since A is assumed to be complex, 
the real amplitude is given by the modulus of A ,  so that 

00 dE = 2 a c i ~ ~ 1 2 - 2 a ~ ~ 1 2  I: K ~ ~ I A I ~ ~ ,  (6) 
dt n-1 

where the subscript i in Kni indicates the imaginary part of K n .  

Substitution of (2)-(6) in (1) yields, after some algebra, the differential equation 
for any $hPd function and the differential equation for any mean-motion distortion 
function Fn, which are given below as (7) and (8) respectively: 

d 

m-1 

2ici d d 2i(d - e) 
Kei g p , d - e -  x [ g p , d - m F m - $ p , d - m F k l  L@a) $pd = 7 g p d -  e-1 x be+- ] 

~. 

2naciFn-AFi = 2a I: (n -p )KPiFn- ,  
P-1 R 

I n  (7), L h a )  is an Orr-Sommerfeld-type operator given as follows: 

where c = c,+ici is the complex phase velocity according to  linear theory. Also g p d  
is the vorticity component corresponding to $ p d ,  and is given as g p d  = 11..;&d -p2a21CrPd. 

The equations for the $pd functions are therefore of the form 

with suitable boundary conditions as follows : 

$‘ pd =v pd = O  

11. pd - - $” p d  = O  

(y=O, podd),  

(y=O,  peven). 

For the Fn functions given in (8), the boundary conditions are 

Fn = 0 

Fk = O  ( y =  0). 

(y = kl ) ,  

The boundary conditions given by (1 1) specify a disturbance mode which is known 
to become unstable, according to linear theory, in the region inside the neutral curve 
in the (a ,  R)-plane. 

has to be suitably normalized at the channel 
centreline. Also, a typical method of obtaining the Landau coefficients K ,  is to impose 

Further, the eigenfunction 
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the solvability condition on the equations for $l,. A typical equation for $ln is of 

(13) 
the form 

L(a) $1, = Nin = T,n-Kngl, 

from which, following Stuart (1960), the K ,  coefficients can be obtained as 

where 8 is the adjoint to the eigenfunction $l. In  the Watson method, T,, in (13) 
contains the function itself. Therefore the solution is somewhat more complicated 
than in the RP method. Further, a suitable normalization has also to be prescribed 
for the $1, function. This was done in the present work by excluding the $l content 
in the I+%~, functions. Some details regarding solution by Watson’s method and the 
normalization of are discussed in $4. 

3. Specific theories and their respective formulations 
The general formulation outlined in $ 2 ,  culminating in ( 7 )  and (8), may be called 

the Watson formulation, in which no simplifying assumptions have been made. For 
this reason, the Watson formulation is also called the ‘true problem’. A serious 
difficulty regarding solution of the mean-motion equation (8) in Watson’s method has 
been pointed out by Davey & Nguyen (1971). They mention that in the region ci < 0 
the mean-motion equation is likely to encounter singularities. This important point 
is discussed in $ 7 .  

In the method of Watson, the disturbance amplitude IAI is used as the small 
parameter, i.e. 1 A l2 is O(E) ,  and ci is O( 1). With these assumptions, the Watson method 
should ordinarily be valid a t  points away from the neutral curve as well, provided 
tha t  other difficulties like those in the case of the mean-motion equation mentioned 
earlier, are not encountered. With the assumption of I A l2 as O(E) ,  Watson’s method 
is always asymptotically valid for I A I + O .  Within the radius of convergence of the 
Stuart-Landau series, or in an extended region of convergence obtainable by using 
a method like the Shanks method, the Watson method can be used to predict dA/dt 
or dl AI2/dt, subject to ci > 0. Also, if the equilibrium amplitude lies within the region 
of convergence or extended convergence, this can also be predicted by the Watson 
method, for ci > 0. 

The Stuart (1960) formulation looks very similar to the Watson formulation, but 
there is an important difference. Stuart basically assumes ci as the small parameter 
and not I Al,  and the ordering of the magnitude of 1 A1 is done in terms of ci. Stuart 
has pointed out to us that equations corresponding to his approach are not correctly 
obtained by letting ci approach zero in a general formulation of the type given by 
(7 )  and (S), except up to cubic-order terms in A .  This is because, unless a suitable 
expansion is found for ci, terms of like order of magnitude cannot be filtered out. An 
appropriate extension and subsequent development of Stuart’s theory is the 
Stewartson & Stuart (1971) theory of development of a wavepacket from the nose 
of the neutral curve. Itoh (1977a) also suggests an improved version of Stuart’s 
theory. We shall not dwell on Stuart’s theory any further as it is outside the scope 
of the present work to investigate equations different from the form of (7) and (8). 
However, as a final comment on Stuart’s work, it may be noted that the first Landau 
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coefficient K ,  calculated by us using Stuart’s (1960) cubic-order theory (which is 
correct) is numerically quite close to the K,  calculated by the equilibrium amplitude 
method of RP. This result is also implicitly corroborated in Pekeris & Shkoller’s (1967) 
work, where they mention that ‘the use of clr+icli in (24) (equation for second 
harmonic), in place of cli, did not change I/?! appreciably’ (Pekeris & Shkoller 1967, 
p. 38). 

The equilibrium-amplitude formulation of Reynolds & Potter (1967) attempts to 
model only the equilibrium state. With this restrictive end in view, dJ A I2/dt is put 
equal to zero at an early stage in the calculations irrespective of whether equilibrium 
actually exists or not. For this reason the method is also called the ‘false problem’. 
A priori substitution of d I A I2/dt = 0 results in considerable simplification in the 
numerical work. In particular, the difficulties regarding the solution of the mean- 
motion equation for ci < 0 are removed. The formulation for this method is derivable 
from (7)  and (8), in which the specific changes due to the equilibrium assumption are 
as follows. 

The terms (2icid/p)gpd and -Zfel (Zi(d-e)/p) Keig,, d-e drop out from the right- 
hand side of (7) .  Also, the term 2naci F, drops out from the left-hand side of (8), and 
the term 2aZ&, (n-p) KpiFn-, drops out from the right-hand side of (8). 

We next consider the Stuart-Landau series in the form given below, in order to 
formalize certain definitions : 

In  Watson’s theory, if the limit ( A ( + O  is taken in (15) then the linear-theory 
relationship is retrieved. Further, within the radius of convergence of the series, (15) 
gives us the values of S corresponding to  different levels of I A I ,  and, the ‘ zero-crossing ’ 
of S gives us the equilibrium state. The value of I A1 for which S = 0 is called the 
equilibrium amplitude. The R P  theory is a special case of the Watson theory, in which 
the focus of attention is the zero-crossing of S. So long as one remains within the radius 
of convergence (or extended radius of convergence by using a method like the Shanks 
method) of (15), there is no restriction in applying Watson’s theory or the R P  theory 
to flows with or without a neutral curve, except for the following limitations. 
Watson’s method cannot be used when ci < 0, and the R P  method is valid only for 
the equilibrium state and when the equilibrium state exists. 

We conclude this section by mentioning that there is an important theory in the 
field due to Itoh (1974a,b, 1977a,b) in which an asymptotic theory using the 
amplitude as the small parameter is developed for a non-monochromatic system. 
Discussions on Itoh’s theory are outside the scope of the present work, although we 
shall refer to Itoh’s theory in a separate paper on pipe flow. 

4. The solution for the functions 
We next embark upon a discussion on the solution for the @,, functions, which 

are a bit involved particularly for Watson’s method. Our aim will be to arrive at a 
rational scheme of normalization of the 1C/,, functions, and thereafter to develop a 
suitable solution procedure that can be matched to the general numerical procedures 
adopted herein. 

To consider the above questions the salient features of Watson’s (1960) own elegant 
solution for @,, are discussed next. Attention is drawn to pp. 375-382 of Watson’s 
(1960) paper, i.e. his equations (1.1.16)-(2.1.26). In  the ensuing discussion, as far as 
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possible, the notation of Watson will be followed. Consider the equation for kll, which 
is given as follows: 

~ ( a )  $11-2ici($y1-a2$11) = 2 ($;-a21~.1) +911, (16) 

where a, is Watson’s form of the first Landau coefficient and gll represents the 
nonlinear forcing terms. Watson envisages the solution of $11 as the sum of the 
solutions of the following two systems A and B : 

system A 

system B 

L(a)  $11 - %(K1- a2$11) = 911 ; 

L(a) @,, - 2ici($;, - a2$P,1) = - ($; - C L ~ $ ~ ) .  

(17) 

(18) 
ia, 
dl 

Watson proposes the solution of system A as an asymptotic series in ci as follows: 

1 

ci 
($,I)* = - $i: l) + $!:) + ci $# + . . . . (19) 

Substitution of (19) in (17) leads to the following set of differential equations: 

L(a) $C.lr” = 0, (20) 

(21 1 L(a)  $it) = qll+2i($~~l)”-a2$!~l)) ,  

The solution for $(:l) from (20) is given as 

$C.lT1) = A, 11.1. (23) 
The arbitrary constant A, is determined from the solvability condition of (21) : 

(24) 

where 8 is the adjoint of $,. Next, the solution for $\:) is given from (21) as 

$i:) = A l $ l + m ?  (25) 

where A, is an arbitrary constant and $$;) is a certain particular integral of (21) having 
the value $@ = 0 a t  y = 0, i.e. at the channel centreline. Again, the arbitrary 
constant A, in (25) is determined from the solvability condition of the equation for 
$&), i.e. the first equation of (22). This gives 

Thereafter, the solution for $1;) is given from the first equation of (22) as 

@W = A, $1 + $C.l?7 (27) 

where again #&) is a certain particular integral with $1;) = 0 at y = 0, and A, is an 
arbitrary constant to be determined as before from the solvability condition for $(;). 

The procedure is thus continued, and the final solution for is obtained as 
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where it is to be remembered that all the particular integrals $!?) are even functions 
and have the value zero a t  the channel centreline. 

Next the solution for system B (18) is considered. This is given as 

The full solution of $,, is given as $,, = ($,,), + ($ll)B. Watson pointed out that 
the only restriction on a, is the boundedness of the quantity (Ao/ci-a,/2aci) in the 
limit ci + O .  Obviously such a wide latitude for the possible values of a, leaves a great 
deal of arbitrariness in the problem. Watson’s own suggestion was to put a,  as follows: 

a, = 2ah0. (30) 

(31) 

$11 = ~ l $ l + $ \ %  (32) 

The full solution for $,, is then given as 

$,, = [A, + c, A, + ‘ . .] $, + $pl) + Ci#$t)+ . . . . 
In the limit c,+O, the above solution becomes 

Thus i t  is seen that on making Watson’s choice for a,, as given by (30), the $,, 
function does contain a part of the eigenfunction $, even in the limit c ,  + O .  This is 
normally no cause for worry, especially as Watson has pointed out that the addition 
of an arbitrary multiple of $, to the solution for leads only to a rearrangement 
of the series at higher orders, each separate arrangement giving a different set of 
Landau coefficients a,  ( n  > 1 ) .  

For reasons that will be apparent later, the desirable choice of a, should be one 
that eliminates the $, content in $,,. To achieve this, a, is expressed in the present 
procedure as an expansion in ci as follows : 

a, = a,,+c,a,,+cfa,,+ ... . (33) 

It is now seen from (28) that the desired answer for a, is obtained by making the 
following choices for the al, in (33) : 

a,, = 2aA0, a,, = 2aA,, ... , a,, = 2aA,. (34) 

The choices above give the final forms of $,, and a, respectively as follows: 

a, = 2a(Ao+ciA,+cfh,+ ...). (36) 

$,, = $g), a, = 2uA0. (37) 

In the limit ci+O, $11 and a, become 

Thus with the choice of a, as in (33) and (34), the $, content in $,, is eliminated. 
Also, since all the $$:) are symmetric and have the value zero at the channel 
centreline, $,, is also symmetric and has the value zero at the channel centreline. 

Now we discuss the reasons why the above normalization is desirable. First, the 
physical interpretation of the $,, functions is that these are distortions of the 
eigenfunction $,. Therefore it seems natural to exclude the $, content in k1, to avoid 
redundancy in the series. 

The second reason is much more important. There is a difficulty in interpreting 
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the ‘growth rate’ and ‘equilibrium amplitude’ if the $l content is not excluded in 
the $ln. Recalling that the fundamental disturbance $1 is given as 

$1 = A$,+AIAl2$1l+..., (38) 

one can easily see that unless the $l content in the $ln is excluded, the ‘amplitude’ 
of $, is not A ,  but something else. For instance, based on Watson’s original choice, 
see (30) and (31), the ‘effective amplitude’ Aeff of is given as 

m m  

n-1 p-1 
(39) 

where the superscript (n) corresponds to the contribution respectively from each of 
the $ln. Thus the interpretation of ‘growth rate’ and ‘equilibrium amplitude’ has 
to be done in terms of Aeff and not A ;  i.e. (l/Aeff)dAeff/dt gives the growth rate, 
and the modulus form of the same expression when equated to zero serves to calculate 
the equilibrium amplitude. Thus working with such a cumbrous expression as in (39) 
is best avoided, especially as Aeff and A become the same when the $ln are normalized 
with the 

For the same reasons as before, the $ln functions in the R P  method were also 
normalized in the same way in the present calculations. It needs also to be mentioned 
that Herbert (1980) suggested that the +ln functions should be normalized to have 
the value zero a t  the channel centreline, both in the method of R P  and of Watson. 
Herbert, however, assigned no particular reason for this choice except for some 
numerical convenience. Accidentally, his choice fulfils the important condition of the 
exclusion of the $l content in the +l,. 

Having settled the important question of the normalization of the $1, functions, 
we turn our attention towards developing a convenient solution procedure for the 
$ln functions. We rewrite (16) as 

content excluded in these. 

Let us apply the solvability condition for (16a) as 

s,’ 8 [2ici($Fl -a2$ll) +gll +$ ($l-a2$1)] dy = 0. 

The technique of solution adopted hereafter is to iterate a few times between (16a) 
and (40). A t  the start, $11 is assumed to be identically zero in (40) and also in the 
right-hand side of (16a). The first approximation to a, is then obtained from (40) 
(which is the same as 2ah,, see (24) and (34)), and this is put into the right-hand side 
of (16a). Next, (16a) is solved to obtain the first approximation for $11, remembering 
that $11 has to be normalized with the value zero a t  the centreline. This first 
approximation for $11 is the same as $4:) (see (21)). The process is thus continued to 
a desired level of convergence. It may be noted that every successive iteration of (16a) 
and (40) introduces corrections to $11 and a, by amounts which are the same as the 
successive terms in the series given by (35) and (36) respectively. Thus the 
convergence rate of the procedure is identical with what would be obtained by 
successively solving the original differential equations of Watson, viz (20)-(22) and 
(24), (26) and so on. Nevertheless, the present procedure of iterating (16a) and (40) 
is much more convenient because the computer has to deal with the ‘same’ two 
equations, and there is therefore considerable saving in algebraic and programming 
labour. Moreover, except for the matter of iteration of (16a) and (40) the algebraic 
and numerical labour is virtually no different than in the case of the RP method, 
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although the theoretical ramifications in Watson’s method are very much more. To 
sum up, we conveniently obtain the solutions for $1, in Watson’s formulation by 
direct use of ( lea)  and (40), and there is no need to  solve separately the system of 
differential equations given by Watson for the solution of the $fi) functions. 

5. Certain computational aspects 
The basic scheme of computation adopted is that of Thomas (1953), which is a 

finite-difference technique employing direct Gaussian elimination for the matrix 
solutions. The method of Thomas, although not necessarily amongst the most 
accurate for solving Orr-Sommerfeld-type equations, has the great advantage of 
numerical stability. It is also easy to control the order of errors in this method by 
choosing a suitable step size and by employing a Noumerov-type auxiliary function. 

With reference to  (7)  and (8), it is seen that the total numbers of terms on the 
right-hand sides of the differential equations for $pd  and F, become very large as 
the orders of p ,  d or n become large. Nevertheless, initially for calculations up to  K3,  
the exact algebraic expressions on the right-hand sides, corresponding to each 
particular $pd  or F,, were actually first worked out by hand and then fed into the 
computer. To calculate the higher-order K,, a technique was developed whereby the 
algebra was worked out in the computer itself. This was achieved by storing the entire 
range of functions $pd  and F,, along with their derivatives, in two huge third-order 
arrays of the type S(N, N ,  J ) ,  and with the summations worked out in DO-loops. Once 
such a generalized procedure became operational in the computer, the chances of 
human error in the algebra were totally eliminated, especially after the initial 
calculations up to K3 were checked out by the generalized scheme. 

I n  the present problem, the numerical procedure has three basic variants; viz the 
free solutions for $1 and 8, the forced solutions for ?,kpd (p > I ) ,  and the solutions of 
the $ln functions. The former two have been described in earlier papers (Thomas 
1953; Pekeris & Shkoller 1967), and the solution for ?,kin, along with a new method 
of obtaining K,, will be described here. All the three situations referred to can be 
tackled by minor variations of the Gaussian elimination procedure. 

We next discuss the solution procedure in brief, and with reference to Thomas’s 
(1953) work and Pekeris & Shkoller’s (1967) work. The original $pd or F, functions 
are converted, a t  the time of solution, to an auxiliary function g (see Thomas 1953) 
by means of a Noumerov-type transformation. Also, application ofthe finite-difference 
technique to an Orr-Sommerfeld-type operator like L b a ) ,  results in this being 
converted into a pentadiagonal band matrix [Atj ] .  Thus a typical differential 
equation for $pd  becomes, in equivalent matrix form, 

[A,l[g,l = [GI ( i , j  = 1 , 2 > 3 , . . . > N + 1 ) ,  (41) 

where [Atj ]  is the matrix equivalent of the operator L(pa), [g,] is the auxiliary function 
vector, and the vector [P , ]  represents the right-hand-side forcing terms. The indices 
i and j refer to stations along the ordinate y ;  i , j  = 1 representing y = 0, and 
i ,  j = N+ 1 representing y = 1, where N is the number of steps being used in the 
finite-difference procedure. I n  the present calculations N was taken as 100, and the 
basic truncation errors were thus kept to O( lop8). Calculations were performed on 
an ICL 2960 computer using double-precision arithmetic. 

I n  the case of the free solutions like ?,kl and 8, the right-hand column vector [GI 
is identically zero, since there is no forcing term. Thus a solution is only possible if 
det [Agj]  is zero. This condition serves to calculate the eigenvalue (see Thomas 1953). 

7 B L M  133 
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Upon Gaussian elimination of (41), the equation specifically a t  i = 1 becomes 
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A h 1  = p;, (42) 

where the prime denotes the altered value after Gaussian elimination. Thus, if Pl is 
zero, as is in the case of free solutions, then i t  is necessary for the element A;,  to be 
zero. Further, if the element A;, is zero then det [Atj ]  is also zero. Actually, the 
element Ail does become zero when a correct eigenvalue for c, corresponding to a 
given u and R, has been kept in the equations. Thereafter, an arbitrary value can 
be assigned to g,, which means that a normalization has to  be specified for $1 or 8.  

I n  the case of forced solutions for $rpd ( p  > l ) ,  Pi in (42) is non-zero, since the vector 
[pi] is non-zero. Also, A;, is non-zero, and thus there is no difficulty in proceeding 
with the solution. 

functions there is a problem. The operator L(a) for $1, is 
identical with that for $l. Thus [Ai3] and the element Ail are also identical, the latter 
having the value zero. However, the forcing vector [P,] is not zero in case of @,,. Thus, 
with reference to (42), i t  is seen that a solution for the $1, is possible only if the 
element Pi (i.e. the first element in [Pi], where [Pi] is the altered [P,]  after Gaussian 
elimination) is zero. However, the remaining elements in [Pi] for i > 1 need not be 
zero. Thus, in this matrix method, the solvability condition for the equation for @,, 
is the requirement that P; should be zero. This condition actually gives us a new 
method for obtaining K,, as explained next. The vector [P , ]  for the $,, function can 
actually be decomposed as [P , ]  = [&J + K,[St].  Therefore, after Gaussian elimination, 
Pi = Q;+K,Si. Thus, if Pi is to be zero, then K ,  is determined as the ratio 
K ,  = -Q;/S;. However, the usual way of determining K ,  is by the adjoint method 
as in (14). It was found that the numerical values of K,, by the matrix method and 
the adjoint method, were in agreement up to a t  least four significant figures. This 
served as a cross-check on the numerical work. 

Finally, i t  is also seen from (42) that  a normalization has to be specified for the 
functions as well. It is easy to see from (41) and (42) that  the $l content in $ l n  

= 0 a t  y = 0.t This is in agreement with the 

I n  the case of the 

is excluded if $1, is normalized as 
theory discussed in $4. 

6. Convergence of the Stuart-Landau series and determination of the 
equilibrium amplitude 

6.1. The ‘correct sum’ of the Stuart-Landau series 

The key equation in any method based on the StuartiWatson formalism is the 
Stuart-Landau series given by (6) or (15). We begin our discussions specifically with 
reference to  (15), in which the equilibrium state corresponds to the zero crossing of 
(1/2u1A12) dlAJ2/dt, i.e. at S = 0. Thus, to know the equilibrium state, one must be 
able to obtain the ‘correct sum’ (to be defined subsequently) for S at different levels 
of \ A ( ,  and then one would be in a position to  know the value of J A J  corresponding 
to the zero-crossing of&, i.e. the equilibrium amplitude. The matter of ‘correct sum’ 
for S is very important, and is intimately connected with the convergence of the 
series. The discussions in this regard in this section are with reference to  the R P  
method only, although certain of the general features of this discussion will be 
useful in $ 7  as well, where the Watson method and the R P  method are compared. 

t Imagine that the auxiliary function g is not being used. Then substitute and 
and 

respectively 
in place of g in both (41) and (42), and work out the matrix solutions for 
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.13 

a- 

FIGURE 1.  Variation of A ,  with wavenumber a, R = 5774. A , ,  A,, A ,  are equilibrium amplitudes 
calculated from the direct sum of the series (15) up to K , ,  K,, K3 respectively. 

R -  
FIQURE 2. Variation of (An)min with Reynolds number R.  (A,),,,',, is the minimum value of A,, for 
different a, with a given R and n. A, ,  A, ,  A ,  are the equilibrium amplitudes calculated from the 
dire& sum of the series (15) up to K,, K,, K3 respectively. 

First the region near the nose of the neutral curve is considered. Here, since ci is 
small, the magnitude of the equilibrium amplitude (henceforth to be referred to as 
A,) is small. Thus for I A I ,< A,, the series in (15) converges rapidly. Here, since the 
series converges, the 'correct sum' for S is given as the sum to infinity of the series, 
and, because the series converges rapidly, the correct sum is virtually the same as 
the numerical sum of the series up to a finite number of terms. Evidence of rapid 
convergence in this region is seen in figures 1 and 2 and also in Herbert's (1980) 
figure 2. 

7-2 
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FIQURE 3. Stability diagram showing curves of (1 )  ct = 0, (2) K,i = 0, (3) K,, = 0, (4) K3i = 0, in 
the (a, R)-plane. Also (5) shows the 'convergence curve', and (6) shows the line across which the 
higher-order K,, (n > 7)  change sign. 

For regions away from the neutral curve, the rate of convergence of the series in 
(15) becomes slower, and the series may even diverge. Interest is actually greater in 
the subcritical region, as this region is of practical importance. Before taking up the 
matter of the correct sum of the series, it  seems that a preliminary investigation of 
the nature of the K ,  coefficients, particularly the sign changes in Kni, is desirable. 
This is shown in figure 3, which shows the points where important changes in signs 
take place in the various Kni. I n  figure 3, the useful subcritical region was found to lie 
in between the upper limb of the Kai = 0 curve and the dashed line in the figure along 
which the higher-order K,, change sign. Within this region defined, it was found that 
the K,, are of alternating sign, and so are the real parts of K,. Besides, outside this 
region also, the Kni coefficients were found to alternate eventually in sign. 

We now concentrate our attention to the useful subcritical region, as defined 
earlier, in which the Kni are of consistently alternating sign. A typical point is a t  
a = 1.15 and R = 5000, for which A ,  is close to, but within, the radius of convergence 
rc of the series. Nineteen K,  coefficients were calculated for this point, and the results 
are given in table 1 .  The $1 function was normalized as = (aR)-f a t  y = 0, in order 
to keep the magnitudes of K ,  within bounds for the computer. The idea for this choice 
of normalization was obtained from the work of Davey & Nguyen (1971) on pipe flow. 
Their discussion on normalization and scales for the wall mode is found to be apt for 
the present case of plane flow as well. To obtain values of K ,  corresponding to the 
normalization $l = 1 at y = 0, the values for K ,  in table 1 have to be multiplied by 
(czR)%~. However, the equilibrium amplitudes given in table 1 and elsewhere correspond 
to the normalization $l = 1 at y = 0. 

We next proceed to evaluate the direct sum of the series S a t  a = 1.15 and R = 5000, 
up to different number of terms, and for different levels of amplitude. The result is 
shown in figure 4, and this is truly revealing. It appears that, even a t  levels of 
amplitude 1 5 ' x  less than the radius of convergence, the partial sums of the series up 
to odd orders of Kni and even orders of Kni are substantially different. Moreover, 
the partial sums up to even orders in Kni show no equilibrium amplitude a t  all. The 
pattern of the diagram is the same a t  other points in the subcritical (a, R)-plane as 
well, except that  for points closer to the neutral curve the abscissa S = 0 is higher 
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An 
equilibrium amplitude 

Kn based on direct 
sum for S, (15), 

n Knr Kni up to the K,, term 
1 -0.2088 x lo-' -0.1067 x lo-' 0.005590 
2 0.1727 x 0.1440 x loW3 - 
3 -0.1736~ -0.2079~ 0.006348 
4 0.2044 x 0.3274 x 
5 -0.2675 x lo-'' -0.5452 x lo-' 0.006603 
6 0.3738 x lo-' 0.9424 x 
7 -0.5438 x lo-' -0.1672 x 0.006 725 
8 0.8088 x 0.302 1 x lo-' - 
9 -0.1212x lo-@ -0.5522 x lo-' 0.006797 

10 0.1806 x 10-lo 0.101 7 x 10-9 - 
-0.2639 x lo-" -0.1878 x lo-'' 0.006846 11 

12 0.3715 x 0.3475 x lo-" - 

13 -0.4894 x 10-13 -0.6426 x lo-'' 0.006885 
14 0.5660 x 0.1187 x - 
15 -0.4633 x 10-15 -0.2188 x 10-13 0.006917 
16 -0.1441 x lo-''' 0.402 1 x - 
17 0.1968 x 10-l6 -0.7369 x lo-'' 0.006945 
18 -0.6488 x 10-17 0.1346 x 
19 0.1666 x 10-17 -0.2450 x lo-''' 0.006970 

TABLE 1. R P  method; a = 1.15, R = 5000, c = 0.2847-0.003433i. Normalization of +1: for K ,  
coefficients +'(O) = (aR)-g; for amplitudes, +1(0) = 1. Equilibrium amplitude by Shanks method 
A, = 0.007387. Radius of convergence rc = 0.00756. Note: to get the values of K ,  corresponding 
to a normalization of $r1(O) = 1, multiply by (aR)in. 

- 

- 

- 

up, and for points away the abscissa S = 0 is lower down than in figure 4. From 
figure 4 i t  appears that, unless a means is found to  accelerate the convergence of 
the series, even nineteen Kni are not adequate to obtain a reasonable approximation 
of the sum to infinity for I A I of the order of A,. 

The expression 'correct sum' for S, hitherto used, needs to be defined at this @age. 
Within I A 1 < rc this is obviously the sum to infinity of the series. For I A1 < rc the 
difficulty does not lie in being able to define the correct sum, but in obtaining its value, 
especially when IA1 is of order yC. It appears that, by use of the Shanks (1955) 
method,t the 'correct sum ' for S can be defined and obtained in the divergent region 
of the series as well. To highlight those features of the Shanks method that are relevant 
to the present problem, we begin by considering an example. We consider the 

(43) f(z) =-= l + 2 + z 2 + z 3 +  .... 

I n  the above expression the binomial expansion for f(z) gives rise to a series which 
has rc = 1, and the expression has a pole a t  z = 1. For values of I z I close to and less 
than rc, and for values of 121 > rc,  the binomial expansion shows an appreciable 
'numerical transient' (as defined by Shanks). The transient is damped for I z I  < rc,  
but amplifies for 121 > rc.  However, the nonlinear transform ey of Shanks filters out 
this numerical transient in either of the two cases, and gives the correct value for 
f(z), irrespective of whether the binomial series is converging or diverging. Therefore 

expression 1 
1 - 2  

t The Shanks method was suggested to us by a referee of an earlier version of the paper. 
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IAl(X10-2)--c 

FIQURE 4. The sum of the series S (15) versus I A 1. The direct sums of the series, up to different 
orders of n in Kni, are shown. Also shown is the correct sum of the series by the Shanks method. 
The equilibrium amplitude A,  and the radius of convergence rc are also indicated. The results are 
for the point a = 1.15, R = 5000. 

the ‘correct sum’ of a series is defined, following Shanks, as (i) the sum to infinity 
within the radius of convergence, and (ii) the analytical continuation of the sum of 
a convergent series in the divergent region of the series (see Shanks 1955, p. 12). The 
correct sum, for the divergent region of a series, is also called the antilimit of the series. 
Thus the Shanks method can be used as an accelerator of convergence in the poorly 
convergent region of a series, and as an inducer of convergence in the divergent region 
of a series. 

I n  actuality, a series like the StuarkLandau series, may have a more complicated 
form than the one corresponding to (43). For instance the series may contain more 
than one pole. For such a case, the Shanks method, using the ep transform, actually 
gives the correct sum for values of I A I within the nearest singularity, and usually 
beyond the nearest singularity as well, provided certain conditions are met with (for 
details see Shanks 1955, Theorems I11 and IV). A notable exception, for the region 
beyond the nearest singularity, is when two singularities lie close to each other, in 
which case, the ep transform fails but the ep transform is appropriate. The present 
results were actually cross-checked by the ep transform as well. However, the e? 
transform itself may fail for a series with a single pole only, for instance when z = - 1 
in the series corresponding to (43). This point is not mentioned by Shanks. 
Nevertheless, the ep transform was found to be perfectly suitable for summing the 
StuartiLandau series in both the convergent and the divergent regions. 

The behaviour of any series purporting to describe a physical phenomenon requires 
careful attention at a pole, especially a t  the first one. The ep transform ‘correctly’ 
sums a series a t  a pole, i.e. it gives the values, approaching + c13 or - 00, on either 
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side of the pole. Yet the question remains as to whether this ‘correct sum’ is 
physically relevant or not. The answer, in most cases, would appear that this is not 
so, and the blowing up of a series at a pole is solely a limitation of the series itself, 
in failing to faithfully describe the physical phenomenon i t  purports to describe. The 
Shanks method provides no remedy for this inherent disadvantage of a series. 

Fortunately, in the R P  method, the Stuart-Landau series is not restricted by this 
above limitation at the nearest singularity. The series, being of alternating sign, has 
its nearest singularity on the negative I AI2 axis, which point is unimportant and 
physically unrealizable. Therefore, even in the divergent region of the series, the ey 
transform sums the series efficiently and without controversy, until a singularity is 
encountered on the positive I AI2 axis. An instance of this is shown in figure 8. Thus, 
with reference to figure 4, with which the discussions began, the curve corresponding 
to the correct sum of the series is actually obtained by the ep  transform of Shanks. 
Also, the zero-crossing of this curve gives the correct value of the equilibrium 
amplitude. Indeed the curve in figure 4 corresponding to the correct sum is not much 
different for six terms or twenty terms in the series, for 1.41 6 A,!  This last result 
amply verifies the usefulness of the Shanks method in the present problem. 

Before concluding this subsection, i t  is relevant to mention that the result for the 
sum of the series S is supposed to be physically meaningful only a t  the equilibrium 
amplitude in the ‘false problem’ of RP.  However, as mentioned earlier, unless a 
reliable method is known by which the sum of the series can be correctly evaluated, 
for different levels of I Al, the equilibrium amplitude cannot also be found. It is in 
this context that the Shanks method proves to very useful. Further, i t  will be 
seen in $ 7  that  in the supercritical region the Watson method and the R P  method 
give substantially the same sums for S, for I A1 6 A,. 

6.2. Determination of the radius of convergence of the series 
There is always interest in knowing the radius of convergence of the Stuart-Landau 
series, even though the nearest singularity is in the negative real axis of I A l 2  , because, 
within the radius of convergence, the more conventional methods of series analysis 
are applicable. The standard way of determining the radius of convergence is by 
means of Domb-Sykes plots (cf. Van Dyke 1975), which is a refined form of the ratio 
test. Typical Domb-Sykes plots are given in figures 5 and 6. It is seen in these figures 
that for some points in the (a ,  R)-plane a trend develops in these plots within terms 
up to K9. For others, like those at  a = 1.10 and a = 1.15 a t  R = 5000, terms up to 
about K,, are necessary. Herbert (1980) also mentions this difficulty. The method 
proves therefore to be very laborious in the present problem, as so many of the 
higher-order K ,  have to be calculated. The results obtained from the Domb-Sykes 
plots are thereafter utilized to better effect to obtain a ‘convergence curve’ in the 
(a, R)-plane, which is shown in figure 3. Within this curve, and the neutral curve, 
the Stuart-Landau series converges. 

The method of obtaining the ‘Convergence curve’ is shown in figure 7 .  Here, for 
different values of R corresponding to  a given a,  the radii of convergence and the 
equilibrium amplitudes by Shanks method are plotted. The intersection of any such 
pair of plots gives a pair of values of a and R corresponding to a point on the 
convergence curve. 

The method of obtaining radius of convergence by Domb-Sykes plots is laborious, 
but convincing. Actually, there is a simpler way of doing so, by using the Shanks 
method. Recalling that the e y  transform ‘correctly’ sums the series a t  a pole, one 
has only to investigate the negative I AI2 region by the Shanks method and locate 
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FIGURE 5. Domb-Sykes plots normalized by the ratio lKzi/Klil. The order of terms in the series 
in (15) is given asp = n+ 1. The radius of convergence is re. Typical points in the (a,R)-plane, for 
which many of the higher-order K,, are required before a trend develops in the Domb-Sykes plots, 
are shown in this figure. 

10th term (n = 9 )  ,ct = 1 .OO, R = 5000 

FIGURE 6. Domb-Sykes plots normalized by the ratio 1 Kzi /K, ,  I. The order of terms in the series 
in (15) is given as y = n+ 1.  The radius of convergence is re. Typical points in the (a, R)-plane, for 
which a trend develops within KB1 in the DombSykes plots, are shown in this figure. 
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FIGURE 7. Method of obtaining the ‘convergence curve’ given in figure 3. Equilibrium amplitude 
A, is obtained by the Shanks method. Radius of convergence rc is obtained from DombSykes 
plots. Variation of A, and rc with R, and for a given a, are shown respectively by the lines @-@ 
and 0-0. Intersection of a pair of such lines, shown by (o), gives a point on the ‘convergence 
curve’. 

the nearest singularity. This can be achieved by using far fewer coefficients in K ,  ; 
about seven seem to be adequate for most purposes. 

6.3. An alternative convergence test and an alternative way of obtaining 
the correct sum of the series 

It has been stated earlier that the correct sum of the series is obtained by the Shanks 
method. Nevertheless, it  is in order to check out the calculation for the correct sum 
by a suitable alternative method. For this purpose we look at the results given in 
table 2, for the point a = 1.04 and R = 5000. In  this table, one column shows the 
size of terms in the Stuart-Landau series, given by the sequence T, defined by 

T, = ci,  T, = -KniIAI2, ( n  = 1 , 2 , 3  ,... ). (44) 
So long as IAl < rc ,  the size of T, will eventually diminish progressively with 
increasing n, although at a very slow rate for I A 1 close to rc. Therefore, since T, is 
a sequence with alternating signs, I Tn...l I > I T, I and I T, 1 + 0 for n+ 00 are sufficient 
conditions for the convergence of the T, sequence. Existence of convergence can be 
further illustrated by the construction of the following sequence V, :t 

V, = BT,, V, = i(Tp--l+Tp) (2, = 1 , 2 , 3  ,... ). (45) 

It can be seen that the respective sums to infinity of the T, and V, sequences are 

t The sequence Vp was suggested by a referee of an earlier version of the paper. 
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n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Kni 
- 

-0.3647 x 
0.3260 x 

-0.3179 x 
0.3875 x 

-0.5485 x lo-' 
0.8356 x 

-0.1312 x 10-8 
0.208 1 x 

-0.3309 x lo-'' 

Tn 
T, = ci 

An 
- -0.1435 x lo-' 

0.006 609 0.221 4 x 1 0 - 2  
- -0.1202 x 10-2 

0.007527 0 . 7 1 1 4 ~  
-0.5264 x 

0.007 725 0.4524 x 
- -0.4185 x 

0.007 805 0.3989 x 
- -0.3842 x 

0.007 858 0.3709 x 

T, = - K,, I 

- 

VP 
v, = 8% 
Vn = i(Tn-1 +Tn) 
-0.7175 x 

0.3896 x 
0.5063 x 

-0.245 1 x 
0.9248 x 

-0.3699 x 
0.1699 x 

0.7363 x 
-0.6649 x 

-0.9768 x lo-' 

V g )  

V 2 )  = b( vn-l + V,) 
V(2) -1v 

0 - 2 0  

-0.3587 x 
-0.1639 x 

0.4480 x 
0.1306 x 

-0.7632 x 
0.2774 x 

0.361 1 x 
-0.1203 x 

0.357 2 x 

-0.io00 x 1 0 - 4  

CT, = CV, = CV!' = 

0.1822 x -0.3240 x 0.8425 x lo-' 

TABLE 2. RP method; a = 1.04, R = 5000, c = 0.2730-0.001435i. Normalization of +1: for K, 
coefficients, +,(O) = (a@-$; for amplitudes, +'(O) = 1. Equilibrium amplitude by Shanks method 
A, = 0.008209; radius of convergence rc = 0.00827. Notes: ( i )  to get the values of K, corresponding 
to a normalization of i,kl(0) = 1, multiply by (aR)1"; (ii) value of IAl used in T,, V, and V$' 
sequences is 1 A /  = A,; (iii) A, is the equilibrium amplitude based on direct sum of S,  (15), up to the 
Kni term. 

the same, a fact which can be verified by using the Shanks method for either sequence. 
However, the sums up to a finite number of terms are not the same. 

The rationale for introducing the V, sequence is that if T, is eventually alternating 
then V, will also be eventually alternating. However, the numerical transient in the 
V, sequence is found to be much less than in the T, sequence, as is seen in table 2. 
Thus convergence is accelerated in the V, sequence, and this helps to explore the 
existence of convergence with finer resolution, in the region of poor convergence of 
the T, sequence. 

The V, transform of T, can be taken a step further, to actually evaluate the sum 
of the series. This is achieved by repeating the V, transform of the V, series itself, 
and successively repeating the process. Each repetition of the V, transform further 
suppresses the numerical transient, until, after m repetitions, the latest sequence VLm) 
has a negligible numerical transient. Moreover, since the VLm) sequence also eventually 
alternates, the size of the higher-order terms in this sequence is very small. Thus the 
sum of the VLm) sequence is very close to the correct sum of the original series. The 
process is illustrated in table 2, where the V$) sequence is also shown. The original 
T, sequence was constructed using I A 1 = A,, where A ,  was calculated by the Shanks 
method, which means that the sum to infinity of the T, sequence should be zero. This 
is verified by the V g )  sequence itself, the sum of the given ten terms of which is seen 
to be 0.84 x lo-'. 

The above method of obtaining the correct sum of the Stuart-Landau series is valid 
only for IAl < rc,  and on this count the Shanks method, which is applicable for 
(A1 > rc as well, overshadows this method. Incidentally the VLm) method was also 
applied to the Leibnitz series for R ,  discussed by Shanks (1955) and Van Dyke (1975, 
pp. 202, 203). The sum up to ten terms of the V g )  sequence itself gave the value of 
R correct to four significant figures. 
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6.4. A common mistake in calculating the equilibrium amplitude 
A common mistake made in calculating the equilibrium amplitude, is to calculate a 
few terms in a StuarGLandau-type series, to put S = 0,  and thereafter to evaluate 
the value of I A1 as the root of a polynomial equati0n.t The answer is wrong because 
the direct numerical sum up to  a few terms in the series is not the same as the correct 
sum of the series unless the series converges rapidly. Moreover, this wrongly 
calculated value of A ,  should not be substituted back into the series to investigate 
the convergence of the series. The extent of error that  can occur is seen with reference 
to figure 4. I n  figure 4 let us consider a situation corresponding to  a point far from 
the neutral curve, for which case the abscissa S = 0 will be much lower down than 
in figure 4. For such a case, the incorrect 'equilibrium amplitudes', calculated as 
mentioned earlier, up to  odd orders of Knit will seem to have values close to  each other. 
This gives a fictitious notion of existence of convergence, even though terms up to 
even orders in Kni do not give any root for A,. The set of incorrect 'equilibrium 
amplitudes ' are seen to  be considerably lower than the correct equilibrium amplitude 
obtained by the Shanks method. It is further seen that, as one moves to the region 
of increasing divergence of the series, the incorrect set of 'equilibrium amplitudes ' 
tend to acquire the value of the radius of convergence of the series, rather than the 
correct value of equilibrium amplitude. This is illustrated in table 3 for the results 
a t  a = 1.10 and R = 4500. 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Knr 
- 0 . 1 9 1 5 ~  lo-' 

0.1500 x 
-0.1493 x 

0.1760 x 

0.3357 x 

0.811 7 x 
- 0 . 1 3 2 8 ~  

0.2222 x 10-10 
-0.3774 x lo-" 

0.6480 x 10-l2 
-0.1121 x 10-12 

0.1947 x 
-0.3392 x 

0.591 7 x 10-15 
-0.1032 x 

0.1797 x 10-lg 
-0.3122 x lo-" 

-0.2335 x lo-' 

-0.5112 X lo-' 

K9l 

Kni 
-0.7007 x 

0.8166 x 
-0.1040 x 

0 . 1 5 2 8 ~  

0.4236 x 

0.1362 x lo-* 

0.461 1 x 10-lo 

0.1592 x 

0.5547 x 
-0.1038 x 10-13 

0.1943 x 
-0.364 1 x 

0.6824 x 

-0.247 1 x lo-' 

-0.751 7 x lo-' 

-0.2497 x 

-0.8554 x lo-" 

-0.2969 x lo-'' 

-0.1279 x lo-'' 

An 
equilibrium amplitude 

based on direct 
sum for S,  (15), 

up to the K,, term 

0.006967 

0.007 820 

0.007 995 

0.008030 

0.008031 

0.008026 

0.008019 

0.008013 

0.008007 

0.008002 

- 

- 

- 

- 

- 

- 

- 

- 

- 

TABLE 3. RP method; a = 1.10, R = 4500, c = 0.2849-0.002869i. Normalization of ~ 1 :  for K, 
coefficients, ykl(0) = (aR)-t; for amplitudes, ykl(0) = 1. Equilibrium amplitude by Shanks method 
A, = 0.009602; radius of convergence rc = 0.00795. Note: to get the value of K ,  corresponding 
to a normalization of +1(0) = 1, multiply by (aRP.  

t An earlier unpublished version of this paper contained this mistake, resulting in the 
'convergence curve' extending to much lower values of R.  
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FIMJRE 8. S/c,  versus [ A [ / A ,  curves for OL = 1.15 and R = 4000, 3500 and 3000. A,  is the rough 
value of the equilibrium amplitude based on Kli.  The series in (15) was summed by the Shanks 
method. A singularity is seen to appear in the curves for R = 3500 and 3000. 

Herbert's (1980) work seems not to have escaped the above error, as the analysis 
given by him for his results a t  a = 1.12 and R = 5000, seems to indicate. Zhou's (1982) 
work also appears to have a similar error. Reference to Zhou's results will be made 
in $6.6. 

6.5. The lower limit of R u p  to which the equilibrium amplitude can be Calculated 
It has been seen that the Shanks method can be used to calculate the equilibrium 
amplitude in t,he divergent region of the series ; and therefore for values of R less than 
that at the nose of the convergence curve given in figure 3. The question is, up to 
how low values of R this may be done. The point is considered in figure 8, where S/ci 
versus I AIIA, curves, obtained by the Shanks method, are given for a = 1.15 with 
R = 4000, 3500 and R = 3000 respectively. The curve for R = 4000 shows a proper 
zero-crossing of S. For R = 3500 it is seen that the series has a pole for a value of 
1 A1 slightly but distinctly higher than A,. However, for R = 3000, this pole shifts 
to lower values of IA( /A , ,  for which case the calculation of A ,  becomes quite 
unreliable. It is therefore concluded that, by means of the procedures adopted here, 
it is not meaningful to calculate equilibrium amplitudes for values of R lower than 
R = 3500. Zhou (1982) has also arrived numerically at a similar conclusion. 

6.6. Calculation of the velocity $fluctuations 
The root-mean-square (r.m.s.) value of the u' fluctuation has been calculated by 
Herbert (1977) by the Fourier-truncation (FT) method, using N = 4. Also, Nishioka, 
Iida & Ichikawa (1975) have obtained curves for the maximum value uk, of the r.m.9. 
u' velocity fluctuation from their experimental work. This u& has been plotted versus 
the circular frequency B. In  the present work also, u' has been calculated, and a plot 
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Y 

FIGURE 9. Distribution of the u‘ r.m.8. velocity for a = 1.12, R = 5000. Curve (1)  shows the 
undistorted fundamental, and curve (2) shows the total u’ r.m.s. velocity. 

of a u’ distribution is given in figure 9. For this purpose, the various series, like those 
in (4), were also summed by the Shanks method, for the real and imaginary parts 
separately. For the present work also, a uh versus p curve has been given in figure 
10 (p = ac,,, where c,, is the modified phase speed obtained by summing the real 
part of (5) by the Shanks method). This curve is in very good agreement with 
Herbert’s (1977) curve obtained by $he F T  method using iV = 4. The points lying 
a t  the two extremities of the curves in figure 10 were cross-checked by sixteen terms 
in the Stuart-Laudau series. In the remaining range ten terms were found to be 
adequate. It was found that the distorted fundamental wave contributed the most 
to the u’ fluctuation, and the content of higher harmonics was small in u’. This last 
result also agrees with Herbert’s (1977) work, and the experimental work of Nishioka 
et al. (1975). 

Of particular interest in the uk versus p curve is the point at a = 1.12 and R = 5000, 
for which we obtained a value of uk = 0.021 55. Herbert obtained uk = 0.0216 at the 
same point using the FT method with N = 4 (this result is reported in Herbert (1980, 
p. 247)). Moreover, in the present work, the uk versus /3 curve spans the (poorly) 
convergent region of the series, as well as the divergent region of the series. Thus the 
corroboration of the numerical results by two independent analytical approaches, viz 
Herbert’s FT method and the present method, speaks very significantly of the 
correctness of the results by both methods, for the two-dimensional problem. 

In  the experimental curve obtained by Nishioka et al., for uk versus p, a dip is 
seen in the values of uk for /3 around 0.36. This dip is not found in either Herbert’s 
(1977) results or in the present results. This is not really a cause for concern, since 
Nishioka et al. report that the dip is due to the advent of three-dimensional spot-like 
disturbances, and three-dimensional disturbances are outside the scope of the present 
investigation. 
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0 . 0 4 ~  

0.011 I , , I , I , I I 

0.2 0.3 0.4 

P- 
FIGURE 10. Plot of the maximum u‘ r.m.s. velocity uk versus the circular frequency /3. Curve ( 1 )  
is from the present work; curve (2) is from the experimental work of Nishioka et al. (1975). Curve 
(1 )  is virtually indistinguishable from that obtained by Herbert (1977) using the Fourier-truncation 
method with N = 4. 

Incidentally, Zhou (1982) also obtains uk versus p curves that seem to be in better 
agreement with the experimental curves, although Zhou also considers two- 
dimensional disturbances. The formulation developed and used by Zhou is a very 
elegant one, and is midway between the FT method and the RP  method. Thus one 
would expect that  Zhou’s calculations would tally with both these methods, because 
the results by the latter two methods are in very good agreement with each other. 
However, this is not found to  be the case. For instance, the equilibrium amplitudes 
calculated by Zhou for the points (a = 1.03, R = 5500), (a = 1.04, R = 5000) and 
(a = 1.05, R = 4500) are given respectively as 0.00378, 0.00635 and 0.00683. The 
results obtained in the present work, for the same set of points, are respectively 
0.00413,0.00821 and 0.01364. The point at a = 1.04 and R = 5000 was also checked 
out by the VLm) method as well, and the details are given in table 2. We thus note 
that Zhou’s results are not in agreement with the present results or those by the FT 
method of Herbert (1977). A possible source of error in Zhou’s results has already 
been suggested in $6.4. A look a t  Zhou’s (1982) table 1 shows that the numerical 
transients in Zhou’s series are not negligible. By looking a t  Zhou’s equations (3.2) 
and (3.3) it seems that there is a need for the following. If the convergence rate is 
not rapid enough either in the various series in powers of a ,  or in those of powers 
of e,  then such series should be correctly summed after evaluation of some more terms 
in the series, and in conjunction with a method like the Shanks method. Before this 
is done, i t  is perhaps too early to reach any conclusions regarding Zhou’s results. 
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7. Comparison of the Watson method and the Reynolds & Potter method 
I n  the Watson method the mean-motion equation (8) runs into difficulties for 

ci < 0, as mentioned earlier. Singularities appear whenever the following equality 
holds : 

(46) 

This is illustrated in table 4. Actually, the smaller ci becomes, the higher is the order 
of m at which the equality in (46) holds for the first time (n  = 0). Now, the order of 
m is the same as the order of the mean-motion distortion function F,. Thus a blow 
up of F, at a singularity results in the blow up of the corresponding value of K,, 
though the K,  for n < m do not blow up. I n  table 4, entries (3), ( 5 )  and (7)  correspond 
approximately to  the blow up of K3, K, and K ,  respectively; i.e. with n = 0 and 
m = 3 , 2 , 1  respectively in (46). Also, entry (9) in table 4 corresponds approximately 
to the blow up of K3, this time with n = 1 and m = 3 in (46). 

The remaining entries in table 4 indicate some parity in the K,  coefficients up to 
n = 3 with the R P  method. These are the points where direct encounters with 
singularities have been avoided, although it  is difficult to avoid diffused influence of 
singularities in the entire region of ci < 0, in view of the nature of (46). 

The conclusion is that  Watson’s method should not be used in the region ci < 0, 
unless a suitable modification is made in the theory, to eliminate the problem of 
singularities. However, for ci+O, in the region ci < 0, the Stuart-Landau series in 
Watson’s method is definitely of asymptotic validity, because the blow up occurs at 
increasingly higher orders in m with ci + 0. The incentive to improve Watson’s theory 
in the region ci < 0 is provided by the fact that this problem is the ‘true problem’, 
which can give the behaviour of dlAI2/dt for different levels of IAl. The ‘false 
problem’ of R P  is valid only a t  the equilibrium state, and when equilibrium exists; 
although i t  can be used with impunity in the region ci < 0. 

We next consider the supercritical region, i.e. with ci > 0. The results in table 5 
again show some measure of parity in the K ,  coefficients up to n = 3, for the Watson 
method and the R P  method. However, for n > 3, the nature of K ,  coefficients in the 
two methods are different. This is shown in table 6, for the point a t  a = 0.826 and 
R = 9000. I n  case of the R P  method, the Kni coefficients are of alternating signs, and 
for the Watson method the Kni coefficients eventually have the same sign. 

Since the K,, coefficients are eventually of the same sign in Watson’s method, the 
nearest singularity (corresponding to the radius of convergence) in the Stuart-Landau 
series lies on the positive I AI2 axis. Nevertheless, if the equilibrium amplitude is even 
slightly less than the radius of convergence, there is no doubt about its correctness, 
because for I A1 < rc the series has a unique sum, which can very reliably be obtained 
by the Shanks method. Table 6 shows that the radius of convergence in Watson’s 
method is considerably smaller than that in the RP method. At the point considered, 
the former has rc = 0.005, and the latter has rc = 0.012. Further, the RP method has 
the nearest singularity on the negative IAI2 axis, which means that the nearest 
singularity poses no problem if the Shanks method is used to sum the series. The series 
in Watson’s method, on the other hand, has closely packed singularities (see figure 
1 1 )  for IAl > re.  Thus Watson’s method cannot be used for IAl > rc in this region, 
even in conjunction with the Shanks method. It seems therefore that the RP  method 
proves to  be superior to  the Watson method in the supercritical region, for the present 
problem of plane Poiseuille flow. 

The results given in table 6 have been used to obtain S versus I A (  curves (see (15)) 

-2maciR = +(2n+1)2n2 (ci < 0; m = 1 , 2 , 3  ,... ; n = 0, 1 , 2 , 3  ,... ). 
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RP Watson 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Kni 
0.1022 x 102 

-0.1360 x lo6 
0.1505 x 1Olo 

-0 .1488~ lo1* 
0.1347 x lo1* 

0.8823 x loz5 
-0.1129~ loz2 

-0.6374 x 1028 
0.4096 x 1033 

An 
0.003998 

0.004494 

0.004 53 1 

0.004532 

0.004532 

- 

- 

- 

- 

Kni 
0.9135 x 10 

0.1582 x 1Olo 
0.4403 x 1013 
0.2542 x 10l8 
0 .1015~ loz3 
0.3558 x loz7 
0.1334 x lo3* 
0.5184 x 1030 

-0.1142 x lo6 

An 
0.004229 

0.004704 
0.004687 
0.004667 
0.004651 
0.004639 
0.004631 
0.004624 

- 

TABLE 6. a = 0.826, R = 9O00, c = 0.2207 +O.OOO 16341. Normalization of : +r,(0) = 1, for both 
K ,  as well as amplitudes. Equilibrium amplitude by Shanks method A ,  =0.004532 (RP), 
A,  = 0.004604 (Watson); radius of convergence rc = 0.012 (RP), rc = 0.005 (Watson). Note: An 
is the equilibrium amplitude based on the direct sum for S, (15), up to the Kni term. 

-0.14 1 I 1 1 I I I I 
0.001 0.002 0.003 0.004 0.005 0.006 0.007 

! A \  
FIQURE 11. S versus IA I curves in the supercritical (ci > 0) region at a = 0.826, R = 9000. Sum 
of the series S (15) was obtained by the Shanks method. Curve for Watson’s method shows closely 
packed singularities, beyond the nearest singularity. See also table 6. 

for both the methods, using the Shanks method of series summation. These curves 
are shown in figure 11. The result is revealing. First, the pole in Watson’s method 
is clearly seen to appear for I A I = 0.005. Secondly, the equilibrium amplitudes 
obtained by both the methods are almost the same. The RP method gives 
A ,  = 0.004532, and the Watson method gives A ,  = 0.004604, both of which were 
calculated by the Shanks method. The good agreement obtained in A ,  adds credence 
to the numerical work, and to the correctness of either formulation. 
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Figure 11 also reveals a very interesting feature. It is seen that the shapes of the 
S versus I A 1 curves, by both the methods, are more or less the same for I A I < A,. 
Thus it appears that the ‘false problem ’ is perhaps not that ‘false ’ after all. This result 
can possibly be capitalized upon, in the subcritical region, where the ‘true problem ’ 
of Watson cannot be used, although at this stage this result cannot be verified for 
the subcritical region. Perhaps some collateral verification of this point will be 
obtained by considering the stability problem for boundary-layer flow past a flat 
plate. For this problem, the mean-motion equation in Watson’s method is not 
subjected to  singularities, provided that non-parallel effects are ignored. Nevertheless, 
the equivalence of the results by the two methods, for IAI < A ,  in the supercritical 
region in the present problem, is a very encouraging feature in favour of the R P  
method. 

As a final word of comment, it must be emphasized that all of the various 
conclusions that have been drawn so far, from the results for the Watson method 
and the R P  method in the present problem of plane Poiseuille flow, should not 
automatically be assumed to be true for other cases of parallel or near-parallel flows. 
These other problems need to be worked out separately, and everything will depend 
on the nature of the respective K ,  coefficients obtained in these problems. 

We are grateful to Professor J. T. Stuart of Imperial College, London, whose 
suggestions were freely available to us through correspondence. Professor Stuart 
has also, through his advice, helped us to revise earlier versions of this paper. Referees 
have given valuable advice on the section on convergence, and this resulted in the 
modification of an earlier draft. One of us (P. K. S.) also benefited from his one-year 
visit to Imperial College duing 1976, especially through discussions, mainly with 
Professor Stuart, and other coworkers in the field. 
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